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Abstract

The effect of various numerical approximations used to solve linear and nonlinear problems with multiple time scales

is studied in the framework of modified equation analysis (MEA). First, MEA is used to study the effect of linearization

and splitting in a simple nonlinear ordinary differential equation (ODE), and in a linear partial differential equation

(PDE). Several time discretizations of the ODE and PDE are considered, and the resulting truncation terms are

compared analytically and numerically. It is demonstrated quantitatively that both linearization and splitting can result

in accuracy degradation when a computational time step larger than any of the competing (fast) time scales is employed.

Many of the issues uncovered on the simple problems are shown to persist in more realistic applications. Specifically,

several differencing schemes using linearization and/or time splitting are applied to problems in nonequilibrium radi-

ation–diffusion, magnetohydrodynamics, and shallow water flow, and their solutions are compared to those using

balanced time integration methods.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The simulation of complex physical processes with multiple time scales presents a continuing challenge

to the numerical modeler due to the co-existence of fast and slow time scales. The multiple time scale system

is termed stiff if it contains both fast and slow time scales. In situations where the fast time scales are

important, one must either resolve them (i.e., with a small time step) or model their effects. Often, however,

the details of the fast time scales are not important. These are situations in which there exists a near balance
among the various processes, and the dynamical time scale of the overall evolution is slow. Mathematically,

these situations are often described by dissipative, nonlinear partial differential equations (PDEs) that imply

the existence of a compact global attractor and an enslaving of the fast scales. It is this class of multiple time
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scale problems that we address in this paper. There are many examples of such problems in plasma physics,

geophysical fluid dynamics, combustion, and radiation hydrodynamics; see, e.g. [1].

For such problems, it is desirable (from the point of view of computational efficiency) to resolve only the

dynamical (slow) time scales. However, this requires overstepping the fast time scales while preserving the

dynamical balance responsible for the time scale enslavement. One effective way to achieve this is by de-

signing nonlinear, implicit difference schemes in which a consistent solution of the separate processes is

ensured even when large time steps (of the order of the dynamical time scale) are employed. We will refer to

such techniques as being implicitly balanced.
Implicitly balanced schemes have been avoided in the past due to the lack of efficient implicit solvers.

Instead, formulations based on time-splitting and/or linearization have predominated. However, recent

progress in developing effective preconditioners is making Jacobian-free Newton–Krylov methods [2,3] a

viable choice for many multiple time scale problems.

The classical analysis of splitting and linearization errors is based on asymptotic expansions of expo-

nential operators – see [4–6]. This technique is well-suited to determine stability and to assess the order of

accuracy (i.e., rate of convergence) of these algorithms, and the results in [5,6] also support the use of

implicitly balanced methods for multiple time scale problems. However, this analysis is less useful for
quantitatively estimating the consequences of linearization, the effects of boundary conditions, or the error

itself. These latter can be more readily diagnosed using an alternate technique known as modified equation

analysis (MEA) [7–9].

The goals of this paper are twofold. First, we will demonstrate the use of MEA to analyze and estimate

linearization and splitting errors. We will use simple examples to show that, even when numerically stable

for arbitrary time steps, linearization and splitting can alter the dynamical balance of the modeled system, a

result of additional truncation terms that degrade numerical accuracy. We will further demonstrate that

MEA can be used to identify these additional truncation terms. Second, we will illustrate the ability of
implicitly balanced algorithms to maintain accuracy while resolving only the dynamical time scale in a suite

of practical applications described by nonlinear, coupled sets of PDEs, including 1D nonequilibrium ra-

diation–diffusion, 2D magnetohydrodynamics, and the 2D shallow water flows. We will compare the ac-

curacy of implicitly balanced methods with that of split and/or linearized methods. We will show that, for a

given level of error, implicitly balanced methods allow larger time steps (in some cases, orders of magnitude

larger) than those required by split and/or linearized methods. Finally, owing to space limitations, we can

not consider all possible splitting or linearization time integration methods. In this manuscript we consider

first-order methods, as these methods are in use in a wide variety of large scale simulation codes. Future
work will consider higher-order splitting and linearization, some of which is underway [10].

The remainder of the paper is organized as follows. In Section 2, we discuss the concepts of MEA,

asymptotic balance, and implicitly balanced methods. In Section 3, we use MEA to study the numerical

consequences of linearization in a simple ODE, and to study the numerical consequences of splitting in a

linear reaction–diffusion PDE. In Section 4, we demonstrate advantages of implicitly balanced methods in

practical applications. Finally, we summarize our results in Section 5.

2. Background

2.1. Modified equation analysis

Modified equation analysis (MEA) is often used in computational physics to assess the stability and

accuracy of numerical algorithms. The modified equation results from a Taylor series expansion of the

discrete fields of the algorithm, treated as if they were continuous. For a consistent algorithm, the modified

equation is the original PDE augmented by the lowest-order truncation terms, i.e., terms whose coefficients
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contain discretization parameters such as the time step or computational cell size. For a consistent dis-

cretization, truncation terms vanish as the discretization parameters tend to zero. However, in practice

these parameters always remain finite, and so the underlying idea is that the modified equation describes the

behavior of the discrete equations more accurately than the original PDE.

MEA was originally used to assess the computational stability of nonlinear equations for which the

standard Fourier techniques cannot be applied [7]. Warming and Hyett [8] established a formal connection

between the standard Fourier techniques and MEA, and pointed out the importance of using the dis-

cretized equations consistently, rather than the original PDE, in the derivation of the modified equation.
Griffith and Sanz-Serna [9] provide an excellent review of the technique and emphasize the importance of

considering the ‘‘modified problem’’ – i.e., the modified equations supplemented by the necessary initial and

boundary conditions. Chang [11] noted an additional issue, that MEA applied to multiple time level al-

gorithms may not identify all sources of instability in the algorithm.

MEA has been used in the construction of high-resolution advection algorithms. For example in [12],

MEA is employed to identify the second-order errors in donor cell differencing, which are then compen-

sated to increase the order of accuracy of the scheme. This process can then be repeated in the revised

algorithm, to identify and compensate third-order errors. MEA has also been used to identify and reduce
specific splitting errors that arise when advective terms and the forcing terms in the momentum equation

are treated separately [13]. MEA has recently been applied to study spatial discretization schemes being

developed to more accurately simulate problems with multiple spatial scales [14].

Finally, we note an additional caveat in the use of MEA for multiple time scale systems. A Taylor series

is an expansion in a small parameter. In this context, small must be judged in terms of dimensionless

parameters. For expansions in time, the parameter typically will be the ratio of the computational time step

to a physical time scale. A subtle pitfall can arise in problems where several fast processes compete to yield a

slower dynamical time scale. In such situations, one can not assume that all time-dependent quantities
evolve on the (slow) dynamical time scale, since individual terms in the equations may depend on the fast

time scales. This is particularly relevant when considering ‘‘accurate’’ Taylor expansions of the separate

terms if the time step is larger than the fastest time scales in the system. Thus, MEA must be applied to

multiple time scale problems with caution.

2.2. Asymptotic balance and enslavement

The evolution of many physical systems is described by nonlinear dissipative PDEs. For example, in

continuum mechanics, nonlinearity naturally appears in the convective terms, while essentially all realizable

physical systems are dissipative. An asymptotic property of certain such PDEs is the development of an

approximate balance between the nonlinear and the dissipative terms. This balance, coupled with the

nonlinearity of the equations, leads to enslavement wherein the small scales of motion are organized (i.e.,
enslaved) by the large scales. The balance also implies that the tendency terms (time derivatives) are small.

That is, the overall dynamical time scale is much larger than the smaller time scales of the individual

processes (i.e., normal modes).

Because the system evolves on a slower time scale, it is not necessary to resolve the fast time scales so

long as the numerical approximations accurately preserve the asymptotic balance. In the context of

Galerkin methods, a technique known as the approximate inertial manifold (AIM; see [15]) directly em-

ploys the enslavement to preserve the balance. A related technique has been developed for explicit finite

difference/volume methods [16]; termed nonlinear enslavement, these algorithms essentially condition the
truncation error to enforce the balance. The enslavement techniques have also been applied successfully to

systems in which dissipation is not part of the principal balance, although there is not yet any formal

mathematical justification [17]. AIM and enslavement techniques require an explicit construction of the
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relation between fast and slow time scales (i.e., the inertial manifold), and so can be difficult to apply to

complex systems with many interacting processes.

2.3. Implicitly balanced methods

We are interested in multiple time scale problems where the dynamical time scale is much slower than

one or more of the normal mode time scales. Since we desire time steps that are larger than the normal

mode time scales, we require implicit methods. In addition, we desire that our time integration approach

strike the correct asymptotic balance on the dynamical time scale. Let us discuss what we mean by an

implicitly balanced approximation. Consider an evolution equation for a variable T ðx; tÞ that can be written
abstractly in the form

oT
ot

¼ RðT Þ þ DðT Þ; ð1Þ

where R and D are nonlinear operators acting on T and its spatial derivatives. We define the dynamical time

scale, sdyn, by

sdyn �
1

T
oT
ot

����
����

� ��1

: ð2Þ

The time scales associated with the process represented by R and D (normal modes) may be fast compared
to the dynamical time scale. In many problems of interest the slower dynamical time scale is a result of a

near balance between R and D. An implicitly balanced approximation to this equation is

T nþ1 � T n

Dt
¼ RðT �Þ þ DðT �Þ; ð3Þ

where T � � T ðx; t�Þ, and Dt is the computational time step. What makes this approximation implicitly
balanced is that the both operators are evaluated at the same instant of time, t� 2 ½tn; tnþ1
.
In this study we employ methods that are implicitly balanced and that are both first- and second-order

accurate in time. We do not consider all possible methods that could be referred to as implicitly balanced. It

is our premise that the practices of time splitting and linearization have the potential to numerically

compromise the natural asymptotic balance of a multiple time scale system. In this study we demonstrate

how this can happen.

Implicit formulations (the method of choice in this work) are well-suited to maintain the asymptotic

balance in complex multiple time scale problems, because all relevant terms in the PDE system can be

approximated at the same time level. However, implicit algorithms of nonlinear PDEs require the solution
of nonlinear algebraic equations. Jacobian-free Newton–Krylov techniques allow one to efficiently solve the

nonlinear system of algebraic equations ~GGð~xxÞ ¼ 0, resulting from an implicit discretization of a system of

nonlinear PDEs. The nonlinear terms are converged using a Newton–Raphson iterative scheme, which

requires the inversion of the Jacobian system Jmd~xxm ¼ �~GGð~xxmÞ, where Jm ¼ o~GG=o~xxjm is the Jacobian matrix
and ~GGð~xxmÞ is the nonlinear residual at each Newton iteration level m. The updated solution is
~xxmþ1 ¼~xxm þ d~xxm; and the iteration proceeds until jj~GGð~xxmþ1Þjj < �a þ �rjj~GGð~xx0Þjj, where ~GGð~xxmÞ has been
properly nondimensionalized. Here �a and �r are an absolute and a relative tolerance, respectively. The
required matrix inversions are performed iteratively using Krylov methods (typically, GMRES [18] for
nonsymmetric, indefinite systems), which allow a Jacobian-free implementation [2,3] (i.e., in which the

Jacobian is neither formed or stored), and preconditioning [18]. The preconditioner is based on reformu-

lating the Jacobian system as JP�1Pd~xx ¼ ~GG (right preconditioning), where P�1 approximates the Jacobian

inverse in some (inexpensive) way. In practice, one solves for ~rr from JP�1~rr ¼ ~GG, and then the Newton
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update is found from d~xx ¼ P�1~rr. The preconditioning step effectively improves the condition number of the
system, and can be seamlessly implemented in the Krylov algorithm.

Formulating an effective and inexpensive preconditioner is essential to achieve efficiency in the

Krylov iteration, and is the focus of intense ongoing research in a variety of physical applications. In

particular, the preconditioning strategies for the applications used in Section 4 are described in detail in

[19–21]. In all cases, the preconditioners have been constructed from non-Newton linearized and/or split

methods. These preconditioners do not effect the accuracy of the Newton–Krylov methods, only their

efficiency.

3. Model problems

In this section, we will consider the practices of linearization and splitting within the context of a

nonlinear reaction–diffusion model problem

oT
ot

� D
o2T
ox2

¼ aðT ÞT ; ð4Þ

where T is the dependent variable (e.g., temperature), D is a diffusion coefficient, and aðT Þ is a reaction
coefficient. For brevity, and to relate to the results in Section 4, we will consider a nonlinear reaction

problem (an ODE) and a linear reaction–diffusion problem (a PDE).

3.1. Nonlinear reaction

Setting the diffusion coefficient to zero in Eq. (4) produces the nonlinear ordinary differential equation

(ODE)

dT
dt

¼ aðT ÞT : ð5Þ

Here the dynamical time scale is

sdyn �
1

T
dT
dt

����
����
�1

¼ jaj�1: ð6Þ

The time scale governing the characteristic rate of change of a is

sa �
1

a
da
dt

����
����
�1

: ð7Þ

It is possible that sa < sdyn, and this is the situation that we consider.
We employ three time discretizations: a first-order accurate nonlinear method (backward Euler)

T nþ1 � T n

Dt
¼ aðT nþ1ÞT nþ1; ð8Þ

a second-order accurate nonlinear method (trapezoidal rule)

T nþ1 � T n

Dt
¼ 1

2
aðT nþ1ÞT nþ1�

þ aðT nÞT n
�
; ð9Þ

and a first-order method, where a is linearized at the previous time level
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T nþ1 � T n

Dt
¼ aðT nÞT nþ1: ð10Þ

(It is possible for this linearized method to be second order.) The practice of linearizing nonlinear coeffi-

cients at the previous time level is common [22,23], and it is often referred to as a semi-implicit (SI) ap-

proach [19].

To perform the MEA on these discretizations, we will use a truncated Taylor series expansion in time of

the temperature; for example

T n ¼ T nþ1 � DtT nþ1
t þ Dt2

2
T nþ1
tt � Dt3

6
T nþ1
ttt þOðDt4Þ: ð11Þ

This expansion is assumed to be accurate on the dynamical time scale, Dt < sdyn. (We use the shorthand
notation Tt � dT=dt, etc.) We will also use a truncated Taylor series expansion of the reaction coefficient,

an ¼ anþ1 � Dt
da
dt

nþ1
þ Dt2

2

d2anþ1

dt2
þOðDt3Þ: ð12Þ

This expansion will be accurate for Dt < sa, which again may be smaller than sdyn.
It is understood that any time integration method can fail to produce its design, or asymptotic, con-

vergence rate if the time step is too large. It is also understood that when this occurs, it is a result of higher-

order terms in the Taylor series expansion becoming important. The primary goal of this subsection is to
demonstrate that when Eq. (8) fails to produce its asymptotic convergence rate, it is a result of higher-order

terms in the expansion of T, whereas when Eq. (10) fails to produce its asymptotic convergence rate, it is a

result of higher-order terms in the expansion of a.
After performing the MEA and moving the leading order errors to the right-hand side, we derive the

modified equation for the first-order nonlinear method (Eq. (8))

½Tt � aðT ÞT 
 ¼ Dt
2
Ttt þOðDt2Þ: ð13Þ

The modified equation for the second-order nonlinear method (Eq. (9)) is

½Tt � aðT ÞT 
 ¼ Dt2

24
Tttt þOðDt3Þ: ð14Þ

Finally, the modified equation for the first-order linearized method (Eq. (10)) is

½Tt � aðT ÞT 
 ¼ Dt
2
Ttt �

da
dt

DtT þOðDt2Þ: ð15Þ

Note that in constructing the modified equation for the linearized method Eq. (15), we have assumed that a
first-order expansion of a is adequate (although, as noted in Section 2.1, it may be necessary to include
higher-order terms in the Taylor expansion of aðT Þ depending on the time step size). In general, when we
use the notation OðDt2Þ we are assuming that Dt is such that all higher-order terms (second and above)
make small contributions to the expansion.

Analysis of these modified equations allows us to identify the sources of numerical error and, in some

situations, to devise more accurate discretizations. For instance, as compared to the modified equation of

the first-order nonlinear method (Eq. (13)), the modified equation of the linearized method (Eq. (15)) has an

additional first-order truncation term that is proportional to ðda=dtÞT (underlined term). This recognition
can be used to define an ‘‘effective’’ reaction rate a� ¼ aðT Þ þ ðda=dtÞDt that, when employed with the
linearized method (Eq. (10)), recovers the solution of the nonlinear method (Eq. (8)). Conversely, using the

first-order nonlinear method to solve
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½Tt � aðT ÞT 
 ¼
�
� da
dt

Dt
�
T ; ð16Þ

should reproduce the solution given by the linearized discretization (Eq. (10)). [Note that the first-order

time integration will reproduce the truncation term ðDt=2ÞTtt in Eq. (15).] When the first-order Taylor series
expansion in a is not adequate (e.g., Dt > sa), then a first-order nonlinear solution of

½Tt � aðT ÞT 
 ¼
�
� da
dt

Dt þ d
2a
dt2

Dt2

2

�
T ; ð17Þ

may more accurately reproduce the linearized method solution since it accounts for the second term in the

expansion of a. When this is the case then we should not expect the linearized method to produce first-order
time step convergence.

Similarly, a higher-order (second or above) solution of

½Tt � aðT ÞT 
 � Dt
2
Ttt ¼ 0; ð18Þ

will reproduce the solution of Eq. (8) as long as the first-order truncation of Eq. (11) is accurate. If this is

not the case then a higher-order solution of

½Tt � aðT ÞT 
 � Dt
2
Ttt þ

Dt2

12
Tttt ¼ 0; ð19Þ

will most likely do better. Again, at this point we would not expect the first-order nonlinear method
(Eq. (8)) to produce first-order time step convergence. The main point here is that the accuracy of the

Taylor series expansion of T controls the design accuracy (convergence rate) of the nonlinear method, while

that of the Taylor series expansion of a controls the design accuracy (convergence rate) of the linearized
method.

We now illustrate this discussion by choosing a particular form for the reactivity aðT Þ, and comparing
the solutions using the first-order linearized algorithm, the first- and second-order nonlinear algorithms,

and the solutions resulting from using the first-order nonlinear algorithm to solve Eqs. (16) and (17). We

choose aðT Þ ¼ �ðT 3 þ aÞ�1 with T ð0Þ ¼ 1:0. The constant a bounds a as T ! 0; we use a ¼ 2:0 10�2.
Then

da
dT

¼ 3T 2

ðT 3 þ aÞ2
; ð20Þ

and

d2a
dT 2

¼ 6T ða� 2T 3Þ
ðT 3 þ aÞ3

: ð21Þ

Figs. 1–3 show the solutions for the second-order nonlinear method, the first-order nonlinear method

and the first-order linearized method, respectively. The baseline solution is obtained with the second-order

nonlinear method using a small time step to ensure accuracy. The dynamical time scale sdyn (Eq. (6)) is a
function of time, and is smallest at t ¼ 0:35, where sdyn � 4:0 10�2. The nonlinear second-order method
retains accuracy even when using time steps Dt ¼ 2:0 10�2 � sdyn – cf. Fig. 1. However, as illustrated in
Figs. 2 and 3, the first-order nonlinear method and the linearized method clearly require a smaller time step
to achieve the same level of accuracy.

To determine when a first-order Taylor expansion of a fails to be sufficiently accurate, we compare Eqs.
(16) and (17) solved with a first-order nonlinear method to the solution of the linearized method. In Fig. 4
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Fig. 2. Performance of the first-order nonlinear method on the nonlinear reaction problem.

Fig. 1. Performance of the second-order nonlinear method on the nonlinear reaction problem.

Fig. 3. Performance of the first-order linearized method on the nonlinear reaction problem.
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one can see comparisons of solutions for two choices of time step. Each comparison contains three solu-

tions: (1) the linearized method; (2) the first-order nonlinear solution of Eq. (16); (3) the first-order non-

linear solution of Eq. (17). At the smaller time step ðDt < saÞ, all three solutions are equivalent,
demonstrating that the modified equation with a first-order expansion in a is sufficient. For time steps
comparable or less than this value, we should expect first-order convergence of the linearized method. At a

larger time step ðDt � saÞ, the result is quite different. Here the second-order expansion of a provides a
noticeably better approximation to the linearized solution. For this larger time step, the first-order ex-

pansion in a is not adequate, and we should not expect first-order convergence. To emphasize this point, we
plot

Dt
a
da
dt

and
Dt2

2a
d2a
dt2

for Dt ¼ 2:0 10�3 and Dt ¼ 1:0 10�2 in Fig. 5. These are the first two terms in the Taylor series for a
(Eq. (12)) normalized by a. At about time ¼ 0.34, Dt ¼ 2:0 10�3, the first term is about 0.08 while the

second term is about 0.004. Thus the second term is less then 1% of the total and only 5% of the first term.

At the same point in time, but with Dt ¼ 1:0 10�2, the first term is about 0.54 while the second term is now
0.12. Thus the second term is greater than 10% of the total and about 20% of the first term.
The effect of the inaccurate Taylor expansion on the numerical solution error is evident in Fig. 6, which

depicts the results of a convergence study as a function of time step. While the second-order method ex-

hibits uniform second-order convergence, the linearized method exhibits first-order convergence only at

small time steps. In Fig. 7 we display the results of a time step convergence study for the two first-order

methods. At some time step, each method loses first-order convergence. The nonlinear method is the more

accurate, and retains first-order convergence to a larger time step. The behavior of the first-order nonlinear

method can be understood by considering the Taylor series expansion of T. Fig. 8 is the companion plot to

Fig. 5, but now we plot the first- and second-order terms in Eq. (11) normalized by T. At time¼ 0.34, and

Fig. 4. Comparison of the first-order linearized solution and its modified equation with first- and second-order Taylor expansions for

two different time steps ðDt ¼ 0:0025; 0:02Þ.

D.A. Knoll et al. / Journal of Computational Physics 185 (2003) 583–611 591



Dt ¼ 1:0 10�2, the first-order term is about 0.2 while the second-order term is still about 0.01. Thus the

second-order term is 1% of the total and only 5% of the first-order term.

This explains why the first-order nonlinear method maintains first-order time step convergence at a

larger time step as compared to the first-order linearized method. The gap in time step is not large for this

model problem, but large enough to establish the concept. Again, achieving the design convergence rate
with the nonlinear method depends on the accuracy on the Taylor expansion of T, while achieving the

design convergence rate with the linearized method depends on that of the expansion of a.

3.2. Linear reaction–diffusion

Next we apply MEA to analyze the effects of time splitting. We only consider the simplest first-order

splittings to illustrate the technique. We recognize that it is straightforward to design a second-order ac-

Fig. 5. Plot of Dt
a
da
dt and

Dt2

2a
d2a
dt2 for two different time steps ðDt ¼ 0:002; 0:01Þ.

Fig. 6. Time step convergence study of the first-order linearized method and the second-order nonlinear method for the nonlinear

reaction problem.
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curate splitting for the problem considered below. Second-order splittings have been applied to the non-

equilibrium radiation–diffusion problem of Section 4.1 in [10]. In that work it was shown that second-order

split methods can produce large errors, as compared to second-order implicitly balanced methods, when the

time step approaches the dynamical time scale. MEA analysis of more sophisticated splittings will be

undertaken in a future study. Here, we consider the linear reaction–diffusion problem (Eq. (4)) with a

constant diffusivity D and constant reactivity a < 0

Fig. 8. Plot of Dt
T
dT
dt and

Dt2

2T
d2T
dt2 for two different time steps ðDt ¼ 0:002; 0:01Þ.

Fig. 7. Time step convergence study of the first-order linearized method and the first-order nonlinear method for the nonlinear re-

action problem.
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oT
ot

� D
o2T
ox2

¼ aT ; ð22Þ

in the domain 06 x6 1, with boundary and initial conditions

Tx¼0 ¼ TL; Tx¼1 ¼ TR; T ðx; t ¼ 0Þ ¼ 0:

The dynamical time scale is estimated as

1

sdyn
� 1

T
dT
dt

����
���� � 1

sdif
þ 1

sreac
;

where

sdif �
L2

D
; sreac �

1

a

����
����;

and L is the length of the domain. In general, the diffusion time scale sdif varies, becoming larger with
increasing problem time. This can be seen from the analytic solution of Eq. (22)

T ðx; tÞ ¼ TSSðxÞ þ
X1
i¼1

an e�½DðnpÞ2�a
t sinðnpxÞ: ð23Þ

Here TSS is the steady-state solution, given by

TSSðxÞ ¼
1

sinhð1=LDÞ
TR sinh

x
LD

� ��
þ TL sinh

1� x
LD

� ��
;

where L2D ¼ �D=a, and the Fourier coefficients are defined as

an ¼ �2
Z 1

0

dxTSSðsÞ sinðnpxÞ:

From Eq. (23), the dynamical time scale is given by

1

sdyn
¼ DðnpÞ2 þ jaj:

Hence, sdif ¼ l2n=D, where ln ¼ 1=ðnpÞ is the characteristic diffusion length scale for each mode n. As time
progresses, only modes with longer sdif (smaller n) survive, and sdif varies in time accordingly.

3.2.1. Some basics

To solve Eq. (22), we will consider two different first-order time-split methods, one that advances the
diffusion first and reaction second (DR), and another that advances the reaction first and diffusion second

(RD). Specifically, the first-order RD splitting is:

T � � T n

Dt
¼ aT �;

T nþ1 � T �

Dt
� D

o2T nþ1

ox2

� �
¼ 0 ð24Þ

and the first-order DR splitting is:

T � � T n

Dt
� D

o2T �

ox2

� �
¼ 0;

T nþ1 � T �

Dt
¼ aT nþ1: ð25Þ
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In both cases T � is an intermediate, or temporary, value for T. Note that for DR splitting the boundary

conditions must be applied to T �.

We will also consider two balanced methods, one first- and the other second-order accurate in time. The

first order, balanced method is

T nþ1 � T n

Dt
� D

o2T nþ1

ox2

� �
¼ aT nþ1; ð26Þ

and the second order, balanced method is

T nþ1 � T n

Dt
� D

o2T nþð1=2Þ

ox2

� �
¼ aT nþð1=2Þ: ð27Þ

Here

T nþð1=2Þ � T nþ1 þ T n

2
: ð28Þ

As pointed out in [9], it is important to consider the ‘‘modified problem’’, which includes the modified

equation, boundary and initial conditions. We will refer to this as modified problem analysis, MPA. In the

present example, the modified equation for the two split methods, DR and RD, will be identical, but the

modified problems (and in particular the boundary conditions) are different; we will see that this is con-

sistent with the simulation results.
Considering the semi-discrete problem in time (i.e., ignoring the spatial discretization), it is straight-

forward to show that the modified problem for the first-order unsplit method is

Tt

�
� D

o2T
ox2

� �
� aT

�
¼ Dt
2
Ttt þOðDt2Þ; Tx¼0 ¼ TL; Tx¼1 ¼ TR; ð29Þ

and for the second-order unsplit method is

Tt

�
� D

o2T
ox2

� �
� aT

�
¼ Dt
24

Tttt þOðDt3Þ; Tx¼0 ¼ TL; Tx¼1 ¼ TR: ð30Þ

Defining the modified problems for the RD and DR split methods is a bit more subtle.

3.2.2. RD modified problem

After combining the two steps from the RD split method in Eq. (25), we derive

T nþ1 � T n

Dt
� D

o2T nþ1

ox2

� �
¼ aT �; T nþ1

x¼0 ¼ TL; T nþ1
x¼1 ¼ TR: ð31Þ

To perform the MEA we must eliminate T n and T � in favor of T nþ1 and its time derivatives. As we have

seen, T n can be eliminated using standard Taylor series expansion. Rather than attempting to write a

similar Taylor series for T �, we can use the second step in the RD split method itself,

T � ¼ T nþ1 � DtD
o2T nþ1

ox2

� �
: ð32Þ
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The modified problem for the RD splitting method can now be written

Tt

�
� D

o2T
ox2

� �
� aT

�
¼ Dt
2
Ttt � DtaD

o2T
ox2

� �
þOðDt2Þ; Tx¼0 ¼ TL; Tx¼1 ¼ TR: ð33Þ

As compared with the first-order unsplit method (Eq. (29)), a new first-order truncation term (underlined)

has appeared in the RD split modified equation. This new term is proportional to the second spatial de-

rivative, and scales with aDt. The modified equation of the RD split method can be identified with the
modified equation of the unsplit first-order method using a modified diffusion coefficient. Indeed, if we

replace D with D� in Eq. (33) and equate terms with Eq. (29), we have

D� ¼ D
1:0� Dta

: ð34Þ

This suggests that using the RD split algorithm with the diffusion coefficient, D�, should reproduce the

results of the first-order unsplit method with the original diffusion coefficient D. For a < 0, the altered

diffusion coefficient remains positive and less than the original coefficient.

3.2.3. DR modified problem

We repeat the analysis for the DR split method. After combining the two steps of Eq. (24), we have

T nþ1 � T n

Dt
� D

o2T �

ox2

� �
¼ aT nþ1; T �

x¼0 ¼ TL; T �
x¼1 ¼ TR: ð35Þ

Since the elliptic operator is applied to T �, our boundary conditions must be enforced for T �. This is a

crucial point in the MPA of the DR splitting. As before, we eliminate T n using Taylor series expansion and

we eliminate T � using the second step in the DR split method

T � ¼ ð1:0� DtaÞT nþ1: ð36Þ

Then the modified problem is

Tt

�
� D

o2T
ox2

� �
� aT

�
¼ Dt
2
Ttt � DtaD

o2T
ox2

� �
þOðDt2Þ; ð1� aDtÞTx¼0 ¼ TL; ð1� aDtÞTx¼1 ¼ TR:

ð37Þ

We see the same additional first-order truncation term appears in themodified equation for DR as was seen in

RD splitting. In addition, DR splitting has introduced an error in the boundary conditions. The MPA shows

that the DR splitting is not equivalent to RD splitting even though their modified equations are identical, and

that for the DR splitting there is an additional new truncation term at the boundary, which scales as aDt. In
applying the DR split algorithm to this model problem, we could rescale the boundary conditions

T �
x¼0 ¼ TL=ð1� aDtÞ; T �

x¼1 ¼ TRð1� aDtÞ: ð38Þ

Then if we use D� and the shifted boundary conditions of Eq. (38), we should get the same result as the first-

order unsplit method using D, and also the same results as RD splitting using D�.

3.2.4. Results for linear reaction–diffusion problem

In the previous subsections, we have analyzed the effects of splitting on a linear reaction–diffusion

problem using semi-discrete MPA. Results of this analysis indicate that if one uses an altered diffusion
coefficient, along with possibly altered boundary conditions, the split methods will reproduce the answers
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from an unsplit method. Here we demonstrate this computationally, and thus validate the MPA results of
the previous subsections.

We consider the problem with T ðx; 0Þ ¼ 0, TL ¼ 1, TR ¼ 0, D ¼ 1, a ¼ �20, and Dt ¼ 0:01, In Fig. 9 we
show a time step convergence study verifying that the simple split methods are indeed first-order accurate.

However, it is not apparent from this figure that either split method will get the correct steady-state solution

using a large time step (i.e. aDt � Oð1Þ). Fig. 10 shows the solutions themselves, as a function of time, at a
particular point ðx ¼ 0:1Þ for the different solution methods. At the chosen time step aDt ¼ 0:2, the two split
methods do not get the correct steady state solution. Furthermore, the two split methods are not equivalent

even though their modified equations were identical. This demonstrates the importance of including
boundary conditions in the error analysis. The solutions from the two split methods give no indication of

error since they are stable and qualitatively correct.

In Fig. 11 we show the time history of the solution at the same particular point ðx ¼ 0:1Þ, for the first-
order unsplit method, the RD splitting with the modified diffusion coefficient D� (Eq. (34)), and the DR

Fig. 9. Time step convergence of unsplit, RD split, and DR split formulations of the linear reaction–diffusion problem.

Fig. 10. Transient solutions at X ¼ 0:1 for the linear reaction–diffusion problem.
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splitting with the modified diffusion coefficient and the altered boundary conditions (Eq. (38)). These three

solutions are identical, confirming the validity of the MPA analysis of the splitting errors. Based on these

results, it is evident that the solution from these first-order split methods can be interpreted as solutions

from an unsplit method using an altered diffusion coefficient. The degree to which the diffusion coefficient is

altered is proportional to the chosen time step normalized by a normal mode (fast) time scale,

aDt ¼ Dt=sreac.

4. Accuracy results on coupled nonlinear PDE systems

In the previous section we demonstrated that linearization and/or splitting may have a serious impact on

the accuracy of a numerical scheme. In addition, we demonstrated that second-order implicitly balanced time-

integration methods can maintain accuracy at larger time steps, up to the dynamical time scales of the

problem. The simplicity of the examples in Section 3 allows for clear understanding of the sources of inac-

curacy. Here we illustrate the relevance of these results in more realistic applications of practical importance.
The current section deals with multiple time scale nonlinear systems. The complex nature of these systems

does not allow for the same level of analysis as was done in the previous section. However, we will point out

the analogies in the behavior of the idealized and the more complex problems. We will also note common-

alities among the examples in this section. In the present study we employ Jacobian-free Newton–Krylov

methods to obtain implicitly balanced time integration. There are other approaches that could also be used.

4.1. Nonequilibrium radiation diffusion

Nonequilibrium radiation diffusion is an important process in many astrophysical problems [22], and in

inertial confinement fusion [24,25]. The 1D model problem considered here has been studied previously in

[26,19] and is an example of a strongly nonlinear reaction–diffusion system.

Fig. 11. Comparison of unsplit and split formulations of the linear reaction–diffusion problem with the corrected diffusion coefficient

ðD�Þ and modified boundary conditions (in the DR split formulation only).
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We consider the following 1D coupled system for the radiation energy E and the material temperature T,

oE
ot

� o

ox
Dr

oE
ox

� �
¼ raðT 4 � EÞ; ð39Þ

oT
ot

¼ �raðT 4 � EÞ: ð40Þ

In these equations, material conduction and material motion are ignored; the physical basis for these

approximations is discussed in [19]. Here ra ¼ T�3 is the photon absorption cross-section. The flux-limited

radiation diffusion coefficient, Dr, is given by

DrðT ;EÞ ¼
1

3ra þ 1
EjoEoxj

� � : ð41Þ

In this set of equations (one PDE and one ODE), energy transport only occurs in the radiation field, while

energy equilibration (the source term) couples the two fields.

The normal mode time scales in this problem arise from reaction (i.e., source term coupling) and from

diffusion. The reaction time scale is sreac � r�1
a . The dynamical time scale is the characteristic length of the

thermal front divided by its propagation velocity [27]. This is analogous to the dynamical time scale in

another well-known reaction diffusion problem, that of laminar flame propagation [28], as well as the
idealized reaction–diffusion equation studied in Section 3.2. In all these three cases, the dynamical time

scale results from a balance of a nonlinear reaction term with diffusion, which occurs in a thin ‘‘reaction

layer’’. However, linearized (linearly implicit) and time-split methods have typically been used [22]. In

[26,19] the phrase ‘‘semi-implicit’’ is used in place of linearly implicit. This is perhaps inadequate termi-

nology, but we will continue to use it here for consistency. In the SI method, the two-component system

remains coupled; however, Dr, ra, and T 4 are linearized using previous time level data, and the nonlin-
earities are not converged within a time step

Enþ1 � En

Dt
� o

ox
Dn
r

oEnþ1

ox

� �
¼ rn

a T nþ1ðT nÞ3



� Enþ1
�
; ð42Þ

T nþ1 � T n

Dt
¼ �rn

a T nþ1ðT nÞ3



� Enþ1
�
: ð43Þ

For comparison, we employ both a first-order (NK1) and second-order (NK2) accurate, nonlinear time

integration method. The second-order method is based on a Crank–Nicolson approach:

Enþ1 � En

Dt
� 1
2

o

ox
Dnþ1
r

oEnþ1

ox

� �
� 1
2

o

ox
Dn
r

oEn

ox

� �
¼ 1

2
rnþ1
a ðT nþ1Þ4



� Enþ1
�
þ 1
2

rn
a ðT nÞ4



� En
�
;

ð44Þ

T nþ1 � T n

Dt
¼ � 1

2
rnþ1
a ðT nþ1Þ4



� Enþ1
�
� 1
2
rn
a ðT nÞ4



� En
�
: ð45Þ

In this subsection we do not draw any conclusions on the effects of splitting, but only consider the effects of

linearization and establish a connection to our results in Section 3.1. We establish that a first-order im-

plicitly balanced method is more accurate than a first-order linearized method. We further establish that

loss of design accuracy of the linearized method occurs when the first-order expansion of a linearized
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coefficient fails to be adequate. Finally, we establish that a second-order implicitly balanced method can be

integrated using a time step on the order of the dynamical time scale while remaining very accurate.

We will use problem 1 from [19], running with a fixed time step. The initial conditions are E ¼ 1:0 10�5
and T ¼ E0:25. A Robin boundary condition for the radiation energy at x ¼ 0 drives a thermal wave from

left to right. In Fig. 12 we show results from a time step convergence study comparing the linearized method

(SI) with the first-order (NK1) and second-order (NK2) nonlinear methods. All results are at time t ¼ 1; the

base solution was generated with the second-order method using a very small time step Dt ¼ 1:0 10�4
(one percent of sdyn). The first observation is that the first-order nonlinear method is more accurate than the
linearized method.

Next, we see that there is a range of time steps for which the SI method clearly does not achieve first-

order time convergence (this is also true for NK1). In contrast, the NK2 method provides uniform second-

order convergence throughout the range Dt 2 ½5:0 10�3; 2:0 10�2
.
This plot should be compared to Fig. 6 from Section 3.1. There are several quantities that are linearized

in the SI method — (Dr, ra, T 4). Here we focus on the photon absorption cross-section, ra ¼ T�3, which is

most analogous to a ¼ ðT 3 þ aÞ�1 in the nonlinear ODE problem of Section 3.1. Its first-order Taylor series

expansion in time is

rnþ1
a � rn

a þ Dt
drn

a

dt
: ð46Þ

Fig. 12 shows that, at the smaller time step, the SI method achieves first-order convergence, but at the larger

time step size it does not. In Figs. 13 and 14 we show plots of rnþ1
a , rn

a, and rn
a þ Dtðdrn

a=dtÞ, for time step
sizes of 1:0 10�3 and 5:0 10�3, respectively. All quantities are measured at the thermal front at time
t ¼ 1. Fig. 13 shows that at the (smaller) time step of 1:0 10�3, the first-order Taylor expansion of ra is a
good approximation for the new time value; we should expect to find first-order convergence and Fig. 12

confirms this. In contrast, at the (larger) time step of 5:0 10�3 Fig. 14 shows that the first-order Taylor
expansion is not a good approximation for the new time value and so we should not expect first-order

convergence. Again, Fig. 12 confirms this conclusion.

For this problem the ‘‘average’’ dynamical time scale is sdyn � 0:015, while the reaction (source term)
time scale is sreac � 0:0005. As seen in Fig. 12, the second-order nonlinear method achieves design accuracy
at Dt � sdyn, while the linearized (SI) method does not achieve design accuracy until Dt � sreac.

Fig. 12. Time step convergence study of the linearized method (SI), the first-order nonlinear method (NK1) and the second-order

nonlinear method (NK2) for the nonequilibrium radiation–diffusion problem.
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Finally, a method that is less than first-order accurate in time can rapidly deviate from the proper so-

lution trajectory, diminishing the total problem time for which the simulation is predictive. Fig. 15 displays

the results of a time step convergence analysis for a first (NK1) and a second-order (NK2) nonlinear

method and for the SI method. Results are shown at two points in time in a log-linear scale. The build up of

error in the SI method from time¼ 0.4 to time¼ 1.0 is dramatic for time steps, where SI does not achieve
first-order convergence (�Dt ¼ 1 10�2). Examining the actual solution at two different times in Fig. 16 for
Dt ¼ 1 10�2, we see the SI method drifting further from the ‘‘base’’ solution as time progresses. This

results in a loss of accuracy, although the solution looks qualitatively correct. Recall that at time¼ 1.0, we

Fig. 13. Plot of rnþ1
a (Sigma ðnþ 1Þ), rn

a (Sigma ðnÞ), and rn
a þ Dtdr

n
a

dt (Sigma TSE) at the location of the thermal front for Dt ¼ 1 10�3.

Fig. 14. Plot of rnþ1
a (Sigma ðnþ 1Þ), rn

a (Sigma ðnÞ), and rn
a þ Dtdr

n
a

dt (Sigma TSE) at the location of the thermal front for Dt ¼ 5 10�3.
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have only taken 100 time steps. The second-order implicitly balanced method is clearly able to retain a

predictive capability at the same time step size. If one reduces the SI time step to Dt ¼ 1 10�3 then the
solution at time¼ 0.4 (not shown) looks much better, but by time¼ 3.0 (not shown), one again observes
significant drift.

There are many similarities between the analysis and results of Section 3.1 and these radiation–diffusion

results. A more detailed analysis of this problem, including MEA and an analysis of the effects of splitting

are left to a future study. Further study of error propagation in time, and of how the number of time steps

and the error accumulation per time step determine the predictivity of a solution is also desirable. Also, the

issue of CPU effort for a given accuracy has been addressed for this problem in [19], and the second-order

implicitly balanced approach was shown to have the distinct advantage.

4.2. Reduced MHD equations

The equations of magnetohydrodynamics (MHD) are used to model phenomena in controlled ther-

monuclear fusion, space physics, and astrophysics [29]. To illustrate the difficulties in solving these equa-
tions, we consider a simplified 2D system that retains a classic stiff wave structure with multiple time scales.

The 2D (x–y plane) reduced MHD (RMHD) equation system [30–32], in Alfv�eenic units (sA ¼ Ly=vA is the
Alfv�een time, and vA ¼ B0 is the Alfv�een speed) is:

r2U ¼ x; ð47Þ

oW
ot

þ ð~vv � r � gr2ÞW þ E0 ¼ 0; ð48Þ

ox
ot

þ ð~vv � r � mr2Þx þ _SSx ¼ ~BB � rJ : ð49Þ

Fig. 15. Time convergence study for the first-order (NK1) and second-order (NK2) implicitly balanced methods and the SI method at

two different points in time ðt ¼ 0:4; 1:0Þ.

602 D.A. Knoll et al. / Journal of Computational Physics 185 (2003) 583–611



Here U is the x� y velocity stream function (i.e.,~vv ¼~zzrU), x ¼~zz � r ~vv is the vorticity in the x–y plane,
W is the flux function, ~BB ¼~zzrW, and J ¼ r2W is the current in the ignorable direction (z). The source

terms E0 (the applied electric field in the z direction) and _SSx have been included to balance the decay of the

ideal equilibrium due to transport. The transport parameters are the kinematic viscosity m and the resistivity
g, which are both assumed constant. An implicitly balanced algorithm for this equation system is docu-

mented in [20].

The normal mode time scales in this system come from Alfv�een wave propagation (fast), diffusion (slow),
and advection. Dynamical time scales of interest arise from resistive instabilities (such as tearing modes

[33,29]). These are much slower than the Alfv�een wave propagation time scale making explicit solution
methods inefficient. However, as in other problems described in this paper, linearization and splitting are

typically used to make the implicit solution methods more tractable. To investigate the effects of these

simplifications, we focus on a classical tearing mode problem on a rectangular 2D domain Lx  Ly . The

problem is initialized with a current sheet

W0ðx; yÞ ¼
1

k
ln cosh k

�
y

�
� 1
2

��
:

We set U0 ¼ x0 ¼ 0. The parameter k determines the inverse of the characteristic width of the current sheet
and also the tearing mode growth rate – i.e., the larger k, the narrower the current sheet and the larger the
tearing growth rate. The dynamical time scale, which is the inverse of the growth rate, results from a

Fig. 16. Thermal front propagation in the nonequilibrium radiation–diffusion problem using the second-order implicitly balanced

method (2nd) and the SI method (linearized) at two different times ðt ¼ 0:4; 1:0Þ.
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balance between the resistive diffusion and the Alfv�een wave propagation [33,29]. It has the functional form
c ¼ ðsAsDÞ�1=2 in units of s�1. Here, sD is the resistive diffusion time scale; typically sD � sA. Thus, the
growth rate is fast compared to resistive diffusion, but slow compared to Alfv�een wave propagation. The
tearing mode is excited by a perturbation of the flux

dW ¼ 10�3 sinðpyÞ cos 2p
Lx

x
� �

:

The simulation parameters are Lx ¼ 3, Ly ¼ 1, k ¼ 5, and g ¼ m ¼ 10�3. For this choice of parameters, the

tearing mode growth rate is c ¼ 0:0435s�1A [20].

To demonstrate the accuracy advantage of an implicitly balanced solution of Eqs. (47)–(49), we consider

four time discretizations:

1. A first-order balanced scheme (backward Euler).

2. A second-order balanced Crank–Nicolson difference scheme:

r2Unþ1 ¼ xnþ1; ð50Þ

Wnþ1 � Wn

Dt
þ ½~vv � rW
nþð1=2Þ � gr2Wnþð1=2Þ ¼ �E0; ð51Þ

xnþ1 � xn

Dt
þ ½~vv � rx
nþð1=2Þ � mr2xnþð1=2Þ ¼ ½~BB � rJ 
nþð1=2Þ � _SSx; ð52Þ

where quantities at the (nþ 1=2)-time level are calculated as nnþð1=2Þ ¼ ðnnþ1 þ nnÞ=2.
3. A split scheme where resistive diffusion is updated in a split step

r2Unþ1 ¼ xnþ1; ð53Þ

WI � Wn

Dt
þ ½~vv � rW
ðIþnÞ=2 ¼ 0; ð54Þ

xnþ1 � xn

Dt
þ ½~vv � rx
nþð1=2Þ � mr2xnþð1=2Þ ¼ ½~BB � rJ 
ðIþnÞ=2 � _SSx; ð55Þ

Wnþ1 � WI

Dt
� gr2Wnþ1 ¼ �E0: ð56Þ

The split step (denoted by I) makes this discretization first-order accurate in time.

4. With a linearized scheme in which ½~BB � rJ 
nþ1=2 is approximated in Eq. (52) by ~BBn � rJnþ1=2, similar to

how one derives Harned–Kerner SI operators for MHD waves [34].

In the typical MHD SI method [34] there is both linearization and splitting. We consider the effects

separately here. As noted earlier, the tearing mode is a balance between resistive diffusion and Alfv�een wave
propagation. We expect that approaches 3 and 4 above will not be able to obtain this balance accurately in

simulations using large time steps, while approach 1 will suffer from standard first-order time discretization

error.

We compare the numerical error of the four schemes above in the tearing problem, evaluated at a

particular time Tf ¼ 60sA, as a function of cDt. Results are shown on two grids, 64 64 and 256 256.
Numerical error is measured by jj~WW � ~WWbasejj2, where ~WW is the poloidal flux solution vector and ~WWbase is a
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‘‘base’’ solution obtained with Dt ¼ DtCFL (i.e., the explicit time step required for stability of Alfv�een waves)
using the second-order balanced method. The results are presented in Fig. 17.
To summarize these results:

1. The second-order balanced method 2 shows true second-order convergence. Either approximation –

splitting or linearizing at least one term – degrades accuracy to first order. An MEA of methods 3 and

4 above should uncover a new first-order error, and it should scale as Dt=sA. These details are left for
future work.

2. The second-order balanced approach allows time steps of the order of the dynamical time scale

(cDt � 1=2) without compromising accuracy; the other approaches are required to closely follow
the explicit Alfv�een wave CFL time step (a normal mode time scale) for comparable accuracy (although
not for stability, since all approaches are numerically stable). Consequently, for the same error level,

the second-order accurate scheme allows implicit time steps orders of magnitude larger than either the

split or the linearized scheme.

It is interesting to note that the process of splitting the resistive diffusion update generates more error than

linearizing the body force.MEA should provide insight into this. In addition, in [20] it was demonstrated that,

Fig. 17. Comparison of the numerical error resulting from the first (BE) and second (CN) order implicitly balanced approaches, the

split method, and the linearized method using the RMHD model on a tearing mode problem in 64 64 and 256 256 grids. Dashed
lines are test scalings for first ðDtÞ and second ðDt2Þ order convergence.
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for the same level of accuracy, a second-order implicitly balanced method can be close to an order of mag-

nitude faster (in terms of overall CPU) than an explicit method for this stiff wave MHD problem.

4.3. Shallow water equations

The shallow water equations are a 2D system of conservation laws that can be used to model many

problems in geophysical fluid dynamics. Like the MHD equations in the previous subsection, this is a

classic stiff wave system where the dynamical time scales of interest are often significantly slower than the

gravity wave time scale. An efficient, second order, implicitly balanced method for this equation system is

documented in [21]. Here we perform an approximate (semi-discrete) MEA (similar to that performed on

the linear reaction diffusion problem in Section 3.2), which illuminates the difference between a first-order

implicitly balanced solution method and a classic SI method for the shallow water equations.
As previously seen, an implicitly balanced algorithm has all terms evaluated at the same time level, and

the nonlinearities in the equations are iterated to convergence before moving to the next time step. In

contrast, the SI method considered here linearizes the potential energy gradient term, uses fully explicit

momentum fluxes, and does not iterate to nonlinear consistency. The splitting of the time step with the

variables at different time levels results in differences in the modified equations, as will be shown.

The shallow-water equations with rotation can be written in conservation form in two dimensions as:

oh
ot

þr � ð~vvhÞ ¼ 0; ð57Þ

o~vvh
ot

þr � ð~vvh�~vvÞ þ 1
2
grh2 � f~zz ð~vvh�~vvbghÞ ¼ 0: ð58Þ

Here h is the height of the fluid,~vv is the fluid velocity (~vv ¼ ux̂xþ vŷy), g is the gravitational acceleration, f is
the Coriolis parameter (frequency), and~vvbg is the background wind velocity, which is an external forcing
function. The gravity wave speed is

ffiffiffiffiffi
gh

p
.

The semi-discrete approximations of Eqs. (57) and (58) for a first-order implicitly balanced algorithm are

hnþ1 � hn

Dt
þr � ð~vvhÞnþ1 ¼ 0; ð59Þ

ð~vvhÞnþ1 � ð~vvhÞn

Dt
þr � ð~vvhnþ1 �~vvnþ1Þ þ 1

2
grðhnþ1Þ2 � f~zz ð~vvhnþ1 �~vvbghnþ1Þ ¼ 0: ð60Þ

Again, the spatial discretizations have not been included since the current analysis focuses on the temporal

errors introduced by splitting, and the resolution is chosen to ensure that the spatial errors are small. The

corresponding modified equations are

oh
ot

þr � ð~vvhnþ1Þ ¼ Dt
2

o2h
ot2

þOðDt2Þ; ð61Þ

oð~vvhÞ
ot

þr � ð~vvhnþ1 �~vvnþ1Þ þ 1
2
grðhnþ1Þ2 � f~zz ð~vvhnþ1 �~vvbghnþ1Þ ¼

Dt
2

o2ð~vvhÞ
ot2

þOðDt2Þ: ð62Þ

The semi-discrete equations of the SI algorithm are

hnþ1 � hn

Dt
þr � ð~vvhÞnþ1 ¼ 0; ð63Þ
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ð~vvhÞnþ1 � ð~vvhÞn

Dt
þr � ð~vvhn �~vvnÞ þ 1

2
ghnrhnþ1 � f~zz ð~vvhnþ1 �~vvbghnþ1Þ ¼ 0: ð64Þ

Here the advection terms are explicit and the potential energy gradient has been linearized. In the standard

SI method, ð~vvhÞnþ1 is evaluated from Eq. (64) and substituted into Eq. (63), leading to a linear scalar

parabolic equation for hnþ1. The corresponding modified equations for the SI algorithm are

oh
ot

þr � ð~vvhnþ1Þ ¼ Dt
2

o2h
ot2

þOðDt2Þ; ð65Þ

oð~vvhÞ
ot

þr � ð~vvhnþ1 �~vvnþ1Þ þ 1
2
grðhnþ1Þ2 � f~zz ð~vvhnþ1 �~vvbghnþ1Þ

¼ Dt
2

o2ð~vvhÞ
ot2

þr � ð~vvhnþ1 �~vvnþ1Þ � r � ~vvhnþ1
( 

� Dt
o~vvh
ot

)
� ~vvnþ1
(

� Dt
1

h
o~vvh
ot

"
�~vvh

h2
oh
ot

#)!

þ Dtgrh
oh
ot

þOðDt2Þ: ð66Þ

Comparing the modified equations of the SI method to those of the implicitly balanced method, we

see that in addition to the errors that come from the time derivative, we now have additional terms

arising from the explicit advection and from the linearized body forces. This is similar to the case of

splitting on the linear reaction diffusion problem in Section 3.2. Indeed, the combined body force term

in the modified momentum equation can be interpreted as having an altered gravity wave speedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhþ Dt oh

otÞ
q

.

The initial conditions for the shallow water test problem are given by the following two equations, which

define tangential velocity ðvtÞ and the height (h) as a function of radius r. These represent a vortex in the
center of the computational domain, assumed square and with sides 2:0 106 m.

vtðrÞ ¼
r

8:0 103
exp � 5:5 10�6 r

8:0104
� �6
 �

1þ r
8:0104
� �2 ð67Þ

ohðrÞ
or

¼ 1

9:8

v2t
r

�
þ 5:0 10�5vt

�
: ð68Þ

Here hð1Þ ¼ 1:0 103 m, gravity is 9:8 ms�2, the Coriolis frequency is 5:0 10�5 s�1, the background
wind blows towards the north-east (diagonally) at 1:5 ms�1, and the problem time is 14 days.

In analogy to our study of the simpler equations in Section 3, we compare the solutions from a first-

order implicitly balanced method (solution A), a first-order implicitly balanced solution of the SI

modified equations that neglects ðDt=2Þðo2h=ot2Þ in Eq. (65) ðDt=2Þðo2ð~vvhÞ=ot2Þ in Eq. (66) and OðDt2Þ in
both (solution B), and the SI solution itself (solution C). In the semi-discrete MEA we have ignored

errors associated with spatial discretization. Assuming that these spatial errors are relatively smaller, we
would expect that solutions B and C above will be equivalent, and different from solution A. Indeed,

Fig. 18 shows that the solutions B and C are nearly identical, and differ from solution A, once again

validating the MEA.

The time step convergence plot in Fig. 19 shows that for the SI method to get approximately the same

accuracy as the second-order implicitly balanced method using Dt � 0:5sdyn, the SI method must use a time
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step near the stiff wave CFL (i.e., ensuring that gravity waves are stable in an explicit approximation). This

is similar to what we observed in the split solution of the MHD problem in the previous subsection. This is

also consistent with the results of splitting on the linear reaction–diffusion problem in Section 3.2. In all

Fig. 18. Approximate MEA verification in the travelling vortex problem. Contour of constant height on a 64 64 grid with (1) a 1st
order implicitly balanced method (dotted), (2) an implicitly balanced solution of the SIs modified equations (solid), and (3) a SI method

(dashed).

Fig. 19. Time step convergence study on a 64 64 grid using the travelling vortex problem.
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cases, when linearization and splitting are used, the linearized split method must resolve the stiff time scales

involved in the balance in order to attain comparable accuracy to an implicitly balanced method. In ad-

dition, in contrast to the problems in the previous two subsections, we see that in this problem the SI

method has comparable accuracy to the first-order implicitly balanced method. Thus, for this set of con-

ditions, the truncation terms

Dt
2

o2h
ot2

and
Dt
2

o2ð~vvhÞ
ot2

dominate over the additional truncation terms resulting from splitting and linearization. Because the SI

method has a stability limit associated with the (advective) Courant condition, the first-order implicitly

balanced method can run at a larger time step. Finally, in [21] the second-order implicitly balanced method

was shown to be more efficient than the SI method for a given level of accuracy.

5. Conclusions

In this paper, we have considered numerical time integration on a class of problems in which the dy-

namical time scales arise from an asymptotic balance of normal mode time scales. It is desirable in such

problems to resolve only the slow dynamical time scale, overstepping the fast normal mode time scales. We

have shown that this can be achieved using implicitly balanced methods. We have further considered al-

ternate, approximate solution methods that employ splitting and/or linearization. The questions we are

interested in asking in this study are related to accuracy.

To answer these questions, we have used modified equation analysis (MEA). In Section 3, MEA was
applied to a simple nonlinear ODE and a simple linear reaction–diffusion PDE. Analytical insight on the

effects of linearization and splitting was obtained. It was shown that:

• Linearization is particularly deleterious when very nonlinear coefficients are present, and may result in

loss of first-order accuracy and in stalling of the numerical error (i.e., the error behaves as OðDtbÞ, with
b < 1, even if the algorithm is formally of first order) for sufficiently large time steps (i.e., larger than the

characteristic rate of change of the nonlinear coefficients). In contrast, second-order, implicitly balanced

numerical algorithms maintain second-order convergence even when time steps comparable to the dy-

namical time scale of the problem are used.
• Time splitting techniques effectively modify the transport coefficients of a problem, as well as the bound-

ary conditions, and result in incorrect (transient and steady-state) solutions when time steps exceeding

the normal mode time scales are used. For the linear PDE considered, MPA was able to provide an exact

prescription for altering the diffusion coefficient and boundary conditions, so as to allow the splitting

methods to produce the identical result as an unsplit method.

We extended our study to more realistic applications in Section 4. In particular, we described problems

with a propagating thermal front in a 1D nonequilibrium radiation–diffusion model, a resistive instability

(tearing mode) in a 2D reduced MHD model, and a traveling vortex in the 2D shallow water equations.
Accuracy comparisons were made among split, linearized, and implicitly balanced implementations of the

governing equations for each of these applications. Although each of these is far more complex than the

idealized problems of Section 3, we were able to identify similar effects due to splitting and/or linearization

in each of the realistic applications. In particular, it was shown that linearized and split algorithms must

resolve the time scales of the fastest normal modes if they are to provide comparable numerical accuracy to

the second order implicitly balanced approach using time steps comparable to the dynamical time scale.

While this study has focused on accuracy, the issue of efficiency has been addressed in [19–21] for all

three problems considered in Section 4. Thus, we conclude that second-order implicitly balanced algorithms
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provide a viable approach for time integration of problems with dynamical time scales much longer than

existing normal modes, both from the efficiency standpoint (e.g., if properly preconditioned Newton–

Krylov techniques are employed [19–21]) and from the accuracy standpoint.
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